7. Sınıf Eşitlik ve Denklem Konu Anlatımı

Karatay

İçinde bilinmeyen bulunan eşitliklere denklem denir. İçinde bir tane bilinmeyen bulunan denklemlere bir bilinmeyenli denklemler denir.7. Sınıf Eşitlik ve Denklem Konu Anlatımı, 7. Sınıf Eşitlik ve Denklem , Eşitlik ve Denklem Konu Anlatımı, 7. Sınıf Matematik, 7. Sınıf Matematik Konu Anlatımı, Eşitlik ve Denklem

Eşitlik ve Denklem

Denklemlerde Eşitliğin Korunumu İlkesi

Eşitliğin korunumu ilkesine göre, bir eşitlik veya denklemin her iki tarafına aynı sayı eklenir ya da her iki tarafından aynı sayı çıkarılırsa veya her iki tarafı da (sıfır) hariç aynı sayı ile çarpılır ya da aynı sayıya bölünürse eşitlik bozulmaz.

Örnek

12 = 12

her iki tarafa 5 ekleyelim

12 + 5 = 12+ 5

17 = 17

Örnek

x – 7 = 15  ise x = ?

x – 7 = 15

x – 7 + 7 = 15 + 7

x = 22

NOT: Bir eşitliğin her iki tarafından aynı sayı çıkarıldığında eşitlik bozulmaz.

Örnek

17 = 17

17 – 5 = 17 – 5

12 = 12

eşitlik bozulmadı.

Örnek

x + 18 = – 22 ise x = ?

x + 18 – 18 = – 22 – 18

x= -40

Birinci Dereceden Bir Bilinmeyenli Denklemleri Kurma

Cebirsel ifadeler konusunda ve belirli durumlara uygun cebirsel ifade yazmayı  öğrendik. Şimdi öğrendiklerimizi uygulayalım.

Örnek

Bir sayının 10 katının 7 eksiği 13’e eşittir.

Burada sayıyı bilmediğimiz için bilinmeyenimiz olan bu sayıya x diyelim.

10.x − 7 = 13

Örnek

Bir miktar şekerin 30 fazlasının 3 katı 120’ye eşittir.

Burada şeker sayısını bilmediğimiz için bilinmeyenimiz olan şekerlere a diyelim.

(a + 30) . 3 = 120

Birinci Dereceden Bir Bilinmeyenli Denklemlerin Çözümü

Problemleri çözerken verilenleri  yazdığımızda terazi modelini düşünerek aşağıdaki işlemleri yaparak çözüme ulaşabiliriz.

• Eşitliğin her iki tarafına aynı sayı eklenebilir.
• Eşitliğin her iki tarafından aynı sayı çıkartılabilir.
• Eşitliğin her iki tarafı aynı sayı ile çarpılabilir.
• Eşitliğin her iki tarafı aynı sayıya bölünebilir.

Problemlerde verilenleri matematiksel ifadeye dönüştürmek gerekir.

Matematiksel ifadeye çevirme yöntemleri:

Herhangi bir x sayısı için;

Ardışık sayılardan en küçüğü x olsun.

Bilinmeyenler birbiri cinsinden yazılabilir.

Birinci Dereceden Bir Bilinmeyenli Denklem Kurmayı Gerektiren Problemler

Örnek-1

2 katının 3 eksiği 33 e eşit olan sayı kaçtır?

Çözüm:
İstenilen sayı x olsun

2 .x-3=33
2.x=33 + 3
2x=36
x=18

Örnek-2

Bir sınıftaki öğrenciler sıralara ikişer ikişer otururlarsa 5 öğrenci ayakta kalıyor. Üçer üçer otururlarsa 5 sıra boş kalıyor. Buna göre bu sınıftaki sıra ve öğrenci sayısını bulunuz.

Sıra sayısına x diyelim

2x + 5 = 3 . (x – 5)
2x + 5 = 3x – 15
x = 20 sıra var
2x + 5 = 2 . 20 + 5 = 45 öğrenci olur.

Örnek-3

Bir sınıftaki kız öğrencilerin sayısı, erkek öğrencilerin sayısının 2 katından 7 eksiktir. Bu sınıfta 35 öğrenci olduğuna göre sınıftaki kız öğrencilerin sayısını bulunuz.

Erkeklere x diyelim
Kız 2x – 7
x + 2x – 7 = 35
3x = 42
x = 14
Kız 2x – 7 = 2 . 14 – 7 = 21 olur

7. Sınıf Matematik Konuları için tıklayınız.

ZİYARETÇİ YORUMLARI - 1 YORUM
  1. emre dedi ki:

    teşekkür ederim

BİR YORUM YAZIN

Soru: 72 + 1 kaçtır?


Basari Sıralamaları